Practical Sketching for Production Systems
Sketching for Production Systems

● What makes a practical sketch?
● Sketch-based Architectures
 ○ Progression: Experimentation to Data cubes
 ○ Case Study
● Common Questions and Challenges
 ○ Implementation subtlety and challenges
 ○ Accepting approximation
 ○ Which Sketch to use?
 ○ System planning
● Examples
 ○ Apache DataSketches` Library
 ○ Demonstration

* Currently in Incubating status
Example: Web Site Logs

<table>
<thead>
<tr>
<th>Time Stamp</th>
<th>User ID</th>
<th>Device ID</th>
<th>Site</th>
<th>Time Spent Sec</th>
<th>Items Viewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 AM</td>
<td>U1</td>
<td>D1</td>
<td>Apps</td>
<td>59</td>
<td>5</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>U2</td>
<td>D2</td>
<td>Apps</td>
<td>179</td>
<td>15</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>U3</td>
<td>D3</td>
<td>Music</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>U1</td>
<td>D4</td>
<td>Music</td>
<td>89</td>
<td>10</td>
</tr>
</tbody>
</table>

Billions of Rows or Key, Value Pairs …

… Analyze This Data in Near-Real Time
Exact Analysis Methods Require Local Copies

Query processing often requires **sorting** …which is very slow.

Note: Micro-batch “streaming platforms”, e.g., Storm, do not solve the fundamental problem for you!
Parallelization Does Not Help Much

Because of Non-Additivity.

You have to keep the copies somewhere!

Col₁, ..., Item, ..., Colₙ

... Billions of rows ...

Example: Map-Reduce

Expensive Shuffle

Exact Results
Exact Time Windowing

Requires Multiple Touches of Every Item

Every dataset is processed N times for a rolling N-day window!
Sketch Properties for Production Systems
(Not All Sketches Qualify)

- Small Stored Size
- Sub-linear in Space
- Single-pass, “One-Touch”
- Distribution Independent
- Order Independent
- Mergeable
- Approximate, Probabilistic
- Mathematically Proven Error Properties
Sketch-Based Systems

- Common pattern while exploring sketches
 - Series of design wins from adopting sketches
- Faster, cheaper, enables new functionality
 - Not all desirable queries have sketching solutions
 - May still need to keep raw data
Win 1: Small Query Space

Sketches Start Small
Sublinear Means they Stay Small
Single Pass Simplifies Processing

Col₁, ..., Item, ..., Colₙ
... Billions of rows ...

O(k) size: ~Kilobytes

Minimal or no sorting required!
Ideal for Streaming & Batch

Query Engine

Sketch

Approximate Answer ± ε

Difficult Query
Win 2: Mergeability

Full Mergeability Enables Parallelism

Non-Additive Metrics Act Like **Additive** Objects

Full Mergeability Enables Set Expressions for Selected Sketches
Win 3: Near Real-Time Queries
Win 4: Simplified Architecture

Intermediate Hyper-Cube Staging Enables Query Speed
Additivity Enables Simpler Architecture

Billions of Rows …

Data Mart (Hyper-Cube)

Stored Sketches Can Be Merged
By Any Dimensions, Including Time!
Win 5: Time Windowing

Late Data Processing Also Simplified

Every data item is processed once for a rolling N day window. Late-data processing is now possible.
Case Study: Flurry/Druid

Offline + Online for Near Real-Time Results

Allows late data updates

Continuous stream from edge web servers

Druid → Streaming (e.g. Storm) (Continuous)

Update queries every 15 sec

Offline (e.g. Hadoop) (Batch)

Dim₁, …, Dimₘ, Item … Billions of rows ...

Query Process
Case Study: Real-Time Flurry, Before/After

Also, Win 6: Lower System Cost

- Customers: >250K Mobile App Developers
- Data: 40-50 TB per day
- Platform: 2 clusters X 80 Nodes = 160 Nodes
 - Node: 24 CPUs, 250GB RAM

<table>
<thead>
<tr>
<th></th>
<th>Before Sketches</th>
<th>After Sketches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Core Seconds (VCS) per Month</td>
<td>~80B</td>
<td>~20B</td>
</tr>
<tr>
<td>Result Freshness</td>
<td>Daily: 2 to 8 hours; Weekly: ~3 days Real-time Unique Counts Not Feasible</td>
<td>15 seconds!</td>
</tr>
</tbody>
</table>
Common Questions and Challenges
Implementation is subtle

● Treat like a math library: Don’t make your own
● Algorithms seem conceptually simple, but…
 ○ Lots of edge cases for robust implementations
 ○ Found significant bugs in well-known HLL distributions
● Simple mergability alone is insufficient!
 ○ System design requirements evolve, e.g. target sketch error
 ○ Need *correct* solutions for merging across sketch sizes
Accepting Approximation

- Different strategies for different roles
 - Scientists/Engineers
 - Experiment to determine accuracy, see what else sketches provide
 - How does sketch error compare to other uncontrolled sources of error (e.g. missing/corrupt data or sampling error, whether implicit or explicit)
 - Product Owners
 - Demonstrate new features
 - Speed gains and cost savings (including reprocessing)
 - Note configurable accuracy
Which Sketch Should I use?

- If multiple sketches seem appropriate, no general answer
 - Accuracy, in-memory size, stored size, update vs merge vs (de)serialize speed
 - Must decide in a systems context

Examples
- Network Router: Count distinct IPs to detect DDoS attack
 - Want small in-memory size, mergeability and set operations less critical
- Web/App Analytics: Count distinct devices/people visiting
 - Different time windows and set operations likely key features
HLL vs CPC vs Theta

- **HLL**
 - Small serialized size, small in-memory footprint
 - Moderate merge speed
 - Terrible accuracy for intersections, no set difference

- **CPC (Compressed Probabilistic Counting)**
 - Best known compressed size/accuracy combination
 - Smallest serialized size, moderate in-memory footprint
 - Moderate merge speed
 - Terrible accuracy for intersections, no set difference

- **Theta**
 - Larger serialized size, in-memory footprint
 - Fast merge speed
 - Best accuracy for intersections, allows set differences
 - Relative size increase vs HLL or CPC depends on usage scenario
System Planning: Key Questions

- What types of queries do I need to support?
- What accuracy do I really need?
 - Ideally, pick library that lets you change your mind later!
- Do I need to support real-time data? Late data?
- With sketches available, what new functions will I want?
Examples
Who are we?

Project Committers

- Lee Rhodes, Distinguished Architect, Verizon Media (project founder)
- Alex Saydakov, Systems Developer, Verizon Media
- Jon Malkin, Ph.D., Research Engineer, Verizon Media
- Edo Liberty, Ph.D., Founder, HyperCube Technologies
- Justin Thaler, Ph.D., Assistant Professor, Georgetown University, Computer Science
- Roman Leventov, Systems Developer for Druid, Metamarkets
- Eshcar Hillel, Ph.D., Sr Scientist, Verizon Media Israel

Extended Team/Consultants

- Graham Cormode, Ph.D., Professor, University of Warwick, Computer Science
- Jelani Nelson, Ph.D., Professor, U.C. Berkeley
- Daniel Ting, Ph.D., Sr Scientist, Tableau / Salesforce
- Dave Cromberge, Permutive

datasketches.apache.org
About the library

Mission: Deep science + quality engineering for **Production Quality** sketches
- Trustworthy sketches
- Robust implementations (8+ years of production use)
- Robust algorithms (see slide 7)
- Open source characterization code

Notable features for large-scale systems
- Backwards compatibility
- Merging across sketch sizes
- Binary compatibility across supported languages
- Consistent serialization formats

datasketches.apache.org
The Apache DataSketches Library

Cardinality, 4 Families
- **HLL**: A very high performing implementation of this well-known sketch
- **CPC**: The best accuracy per space
- **Theta Sketches**: Set Expressions (e.g., Union, Intersection, Difference), on/off Heap
- **Tuple Sketches**: Generic, Associative Theta Sketches, multiple derived sketches:

Quantiles Sketches, 2 Families
- **Quantiles**, Histograms, PMF’s and CDF’s of streams of comparable objects, on/off Heap.
 - **KLL**, highly optimized for accuracy-space.
- **Relative Error Quantiles** (under development)

Frequent Items (Heavy-Hitters) Sketches, 2 Families
- **Frequent Items**: Weighted or Unweighted
- **Frequent Directions**: Approximate SVD (a Vector Sketch)

Sampling: Reservoir and Variance Optimal (VarOpt) Sketches, 2 Families
- **Uniform and weighted sampling** to fixed-\(k\) sized buckets

Languages Supported:
- Java, C++, Python
- Binary Compatibility

datasketches.apache.org
Thank you!