
Practical Sketching for 
Production Systems



Sketching for Production Systems

* Currently in Incubating status

● What makes a practical sketch?
● Sketch-based Architectures

○ Progression: Experimentation to Data cubes
○ Case Study

● Common Questions and Challenges
○ Implementation subtlety and challenges
○ Accepting approximation
○ Which Sketch to use?
○ System planning

● Examples
○ Apache DataSketches* Library
○ Demonstration



… Analyze This Data in Near-Real Time

Time 
Stamp

User 
ID

Device 
ID

Site Time Spent 
Sec

Items 
Viewed

9:00 AM U1 D1 Apps 59 5

9:30 AM U2 D2 Apps 179 15

10:00 AM U3 D3 Music 29 3

1:00 PM U1 D4 Music 89 10

Billions of Rows or Key, Value Pairs …

Example: Web Site Logs



Col1, ..., Item, ..., Coln
… Billions of rows ...

Ω(u) size: ~ Big Data

Exact 
Results 

Difficult

Query

Local Item Copies

Query processing 
often requires sorting 
…which is very slow.

Query Engine 

Exact Analysis Methods Require Local Copies

Note: Micro-batch “streaming platforms”, e.g., Storm, 
do not solve the fundamental problem for you!

Big Data



Parallelization Does Not Help Much
Because of Non-Additivity.

You have to keep the copies somewhere!

Col1, ..., Item, ..., Coln
… Billions of rows ... 𝝨 Exact 

Results 

Expensive Shuffle 

Copy

Copy

Copy

Copy

Copy

Copy

Example: Map-Reduce



Every dataset is processed N times for a rolling N-day window!

Exact Time Windowing
Requires Multiple Touches of Every Item



Sketch Properties for Production Systems
(Not All Sketches Qualify)

• Small Stored Size
• Sub-linear in Space
• Single-pass, “One-Touch”
• Distribution Independent
• Order Independent
• Mergeable
• Approximate, Probabilistic

Sub-linear

Stream Size

Linear
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• Mathematically Proven Error Properties



Sketch-Based Systems

• Common pattern while exploring sketches
○ Series of design wins from adopting sketches

• Faster, cheaper, enables new functionality
○ Not all desirable queries have sketching solutions
○ May still need to keep raw data



Win 1: Small Query Space
Sketches Start Small
Sublinear Means they Stay Small
Single Pass Simplifies Processing

O(k) size: ~Kilobytes

Approximate 
Answer ± ε  

Difficult

Query

Minimal or 
no sorting required!

Ideal for Streaming & Batch

Query Engine 

Sketch
Col1, ..., Item, ..., Coln
… Billions of rows ...



Win 2: Mergeability
Full Mergeability Enables Parallelism
Non-Additive Metrics Act Like Additive Objects
Full Mergeability Enables Set Expressions for Selected Sketches  

Sketch Approx. ± ε 

Sketch

Sketch

… , Item
… many rows

… , Item
… many rows

Query

Query

Partitions

Merge

Col1, ..., Item, ..., Coln
… Billions of rows ...



Win 3: Near Real-Time Queries
Win 4: Simplified Architecture
Intermediate Hyper-Cube Staging Enables Query Speed
Additivity Enables Simpler Architecture



Win 5: Time Windowing
Late Data Processing Also Simplified



Case Study: Flurry/Druid
Offline + Online for Near Real-Time Results

Allows late data updates Update queries every 15 secDruid →

Offline
(e.g. Hadoop)

Streaming
(e.g. Storm)



Case Study: Real-Time Flurry, Before/After
Also, Win 6: Lower System Cost

• Customers: >250K Mobile App Developers
• Data: 40-50 TB per day
• Platform: 2 clusters X 80 Nodes = 160 Nodes

– Node:  24 CPUs, 250GB RAM

Before Sketches After Sketches

Virtual Core 
Seconds (VCS) 
per Month

~80B ~20B

Result 
Freshness

Daily: 2 to 8 hours; Weekly: ~3 days
Real-time Unique Counts Not 
Feasible

15 seconds!

Big Wins!
Near-Real Time 
Lower System $



Common Questions and Challenges



Implementation is subtle
● Treat like a math library: Don’t make your own
● Algorithms seem conceptually simple, but…

○ Lots of edge cases for robust implementations
○ Found significant bugs in well-known HLL distributions

● Simple mergability alone is insufficient!
○ System design requirements evolve, e.g. target sketch error
○ Need correct solutions for merging across sketch sizes



Accepting Approximation
● Different strategies for different roles
● Scientists/Engineers

○ Experiment to determine accuracy, see what else sketches provide
○ How does sketch error compare to other uncontrolled sources of error

(e.g. missing/corrupt data or sampling error, whether implicit or explicit)

● Product Owners
○ Demonstrate new features
○ Speed gains and cost savings (including reprocessing)
○ Note configurable accuracy



Which Sketch Should I use?
● If multiple sketches seem appropriate, no general answer

○ Accuracy, in-memory size, stored size, update vs merge vs (de)serialize speed
○ Must decide in a systems context

● Examples
○ Network Router: Count distinct IPs to detect DDoS attack

■ Want small in-memory size, mergeability and set operations less critical
○ Web/App Analytics: Count distinct devices/people visiting

■ Different time windows and set operations likely key features



HLL vs CPC vs Theta
● HLL

○ Small serialized size, small in-memory footprint
○ Moderate merge speed
○ Terrible accuracy for intersections, no set difference

● CPC (Compressed Probabilistic Counting)
○ Best known compressed size/accuracy combination
○ Smallest serialized size, moderate in-memory footprint
○ Moderate merge speed
○ Terrible accuracy for intersections, no set difference

● Theta
○ Larger serialized size, in-memory footprint
○ Fast merge speed
○ Best accuracy for intersections, allows set differences
○ Relative size increase vs HLL or CPC depends on usage scenario



System Planning: Key Questions
● What types of queries do I need to support?
● What accuracy do I really need?

○ Ideally, pick library that lets you change your mind later!

● Do I need to support real-time data? Late data?
● With sketches available, what new functions will I want?



Examples



Examples Powered By:

datasketches.apache.orgCurrently in incubation status

http://datasketches.apache.org


Who are we?
Project Committers

● Lee Rhodes, Distinguished Architect, Verizon Media (project founder)
● Alex Saydakov, Systems Developer, Verizon Media
● Jon Malkin, Ph.D., Research Engineer, Verizon Media
● Edo Liberty, Ph.D., Founder, HyperCube Technologies
● Justin Thaler, Ph.D., Assistant Professor, Georgetown University, Computer Science
● Roman Leventov, Systems Developer for Druid, Metamarkets
● Eshcar Hillel, Ph.D., Sr Scientist, Verizon Media Israel

Extended Team/Consultants
● Graham Cormode, Ph.D., Professor, University of Warwick, Computer Science
● Jelani Nelson, Ph.D., Professor, U.C. Berkeley
● Daniel Ting, Ph.D., Sr Scientist, Tableau / Salesforce
● Dave Cromberge, Permutive

datasketches.apache.org

http://datasketches.apache.org


About the library

datasketches.apache.org

Mission: Deep science + quality engineering for Production Quality sketches
● Trustworthy sketches
● Robust implementations (8+ years of production use)
● Robust algorithms (see slide 7)
● Open source characterization code

Notable features for large-scale systems
● Backwards compatibility
● Merging across sketch sizes
● Binary compatibility across supported languages
● Consistent serialization formats

http://datasketches.apache.org


The Apache DataSketches Library
Cardinality, 4 Families

• HLL: A very high performing implementation of this well-known sketch
• CPC: The best accuracy per space
• Theta Sketches: Set Expressions (e.g., Union, Intersection, Difference), on/off Heap
• Tuple Sketches: Generic, Associative Theta Sketches, multiple derived sketches:

Quantiles Sketches, 2 Families
• Quantiles, Histograms, PMF’s and CDF’s of streams of comparable objects, on/off Heap.

KLL, highly optimized for accuracy-space.
• Relative Error Quantiles (under development)

Frequent Items (Heavy-Hitters) Sketches, 2 Families
• Frequent Items: Weighted or Unweighted
• Frequent Directions: Approximate SVD (a Vector Sketch)

Sampling: Reservoir and Variance Optimal (VarOpt) Sketches, 2 Families
• Uniform and weighted sampling to fixed-k sized buckets

Languages Supported: 
• Java, C++, Python
• Binary Compatibility

datasketches.apache.org

http://datasketches.apache.org


Thank you!


