
Data Sketching for Real
Time Analytics

Theory and Practice

Daniel Ting Jon Malkin Lee Rhodes
Tableau Research Apache Datasketches Apache Datasketches

Verizon Verizon

Thank you
Alex Saydakov (Verizon)
Edo Liberty (Hypercube)
Justin Thaler (Georgetown)
Jelani Nelson (Berkeley)
Graham Cormode (U Warwick)
Jacques Dark (U Warwick)
Charlie Dickens (U Warwick)
Otmar Ertl (Dynatrace)
Pedro Reviriego (U Carlos III de Madrid)
Edith Cohen (Google, U Tel Aviv)

Why data sketching
● Big Data problem
● There is a tremendous amount of data right now

○ Continues to grow
○ IDC estimate 2x in 4 years

● Resulting problems
○ Scale
○ Speed
○ Cost

● Fundamental problem of Big Data is
… that it is Big.

Why data sketching

● Data sketching is a way to make Big Data small

● What possibilities are opened up if speed and cost are not worries?
○ Real–time analytics?
○ New UIs? Automated analyses?
○ Potentially tackle problems that would not be tried before?

Definition

Data Sketch = Lossy compression or summarization
of data that provides answers to a set
of questions of interest

Main properties
Advantages

● Space: Saves (a lot) of space: can be < 1/1000th of the space
● Speed: Typically 1-pass and often parallelizable when building them and

nearly instantaneous when reading them

Downsides (no free lunch)

● Universe of questions / queries must often be determined in advance
● Approximation error

● Often with a theoretical bound

Basic Examples
● Simple random samples
● Histograms

● Size does not grow with the length of
the data

● Generates approximations for almost
any univariate statistic

● Discards any multivariate information

● Pre-computed aggregates
● Statistical models

Approximate query processing examples
Typical sketches

● Eliminate an expensive operation or data structure used in exact query processing
● Provide accuracy guarantees on worst case inputs

Examples:

● Cardinality estimation / Distinct counts
● Frequent items / Top-k
● Quantiles
● Subset sums (SELECT SUM(...) … WHERE ..)
● Approximate set membership (Bloom filters)
● Set similarity (MinHash)

Advanced methods

Numerical linear algebra

● Random projections (any L_p)
● Sketched SVD / Frequent Directions
● Leverage score sampling for accelerating regression

Other advanced methods

● Nyström approximations for low rank approximations for kernel matrices
● Core sets for accelerating statistical / ML model fitting
● Graph sketches

Wide range of applications
● Networking

○ Monitoring
○ Security: attack detection

■ Distributed Denial of Service
■ Port scanning

○ Caching
● Biology

○ Frequent k-mers
● Databases

○ Approximate set membership
■ File / partition skipping

○ Query planning
■ Join size cardinality estimation

○ AQP

● Web / Information retrieval
○ Fast similarity measures / duplicate

detection
○ Blacklists

● Business Analytics
○ Fast, interactive analytics

● ML / Data science / Linear algebra
○ Fast computation
○ Large scale analyses

Applications
Sketches often help in
● Scaling up analyses
● Accelerating tasks
● Extremely memory limited situations
● Reducing communication costs

Outline
● Describe several sketches

○ Distinct counting
○ Quantiles
○ Sampling
○ Frequent items
○ Linear sketches
○ “Advanced” methods

● Privacy and sketches
● Highlight key techniques and takeaways as we go through each sketch

What to get out of the tutorial
Practitioners

● Navigating data sketches
○ Capabilities of sketches
○ How to understand sketching guarantees
○ How to choose a sketch
○ Where to look for more information

Researchers

● Statistical approach to sketching
● New developments
● Some open problems

Approximate Distinct
counting

Problem
Cardinality estimation

● Given a data stream X or multiset x1, x2, …, xt

● Compute the cardinality N = |{x1, x2, …, xt}|

Approximate distinct counting sketch

Data: X Sketch: S Estimate:
!𝑁(𝑆)

Applications
● Advertisers

○ Reach estimation: How many distinct users saw an ad campaign?
○ Audience size: If I’m already publishing ads on CNN and The Guardian, should I spend money

advertising on the Washington Post or a basket of blogging sites.
○ Demographic breakdowns

CNN

The
Guardian

Blogging
sites

Washington
Post

CNN

The
Guardian

Distinct counting
Ad problem:

How many distinct users saw an
ad / website / post?

Database query:

select count(distinct user)
from very_large_stream

Execution (Naive):

● Insert each user into a hash table
● Compute the number of keys in

the table

Cost:

● N = 1 million, 64 bits / user
● Hash table size per ad: 16 MB
● 100K ads / day ⇒ 1.6 TB / day
● Over 1 month ⇒ 50 TB / month
● With demographic breakdowns,

much higher costs

Distinct counting
Ad problem:

How many distinct users saw an
ad / website / post?

Database query:

select count(distinct user)
from very_large_stream

Sketch Cost:

● Sketch size (4 bit HLL) m=2 KB
● Relative error: 1.5%
● 8000x improvement in space
● 50 TB → 6 GB (single machine)

Main challenge:
● Handling duplicates

Technique: Hash-
based / Coordinated
sampling

How distinct counting sketches work
Data: x1, x2 , … , xt

● Assume there is a universal hash function xi → Zi ~ Uniform(0,1)
○ Results in n distinct values
○ Distribution is known and depends only on the desired value n

Data: X
With

unknown
distribution

Distribution:
n Uniform(0,1)

draws

Sketch:
𝑆

How distinct counting sketches work
Data: x1, x2 , … , xt

● Assume there is a universal hash function xi → Zi ~ Uniform(0,1)
○ Results in n distinct values
○ Distribution is known and depends only on the desired value n

● MinCount / kMV Sketch: Keep smallest k distinct values

Data: X

Distribution:
n

Uniform(0,1)
draws

Sketch: 𝑆
= k-min
values

General paradigm (for statistical data sketching)
1. Convert data into a random process with some known distribution

○ Parameters of the distribution are answers to the queries of interest

○ Random process can be updated and stored efficiently

2. Perform parameter estimation to extract answers of queries of interest

Estimating the count

Imagine counting the total
trash on a beach.

Total trash =
(Trash rate) x
(length of beach)

𝑇𝑟𝑎𝑠ℎ 𝑅𝑎𝑡𝑒 =
𝑘

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑓𝑖𝑛𝑑
𝑘 𝑝𝑖𝑒𝑐𝑒𝑠 𝑜𝑓 𝑡𝑟𝑎𝑠ℎ

Values Zi = location along
beach

vaidehi shah https://flic.kr/p/JBUH9y CC BY 2.0

https://flic.kr/p/JBUH9y

Estimating the count

Imagine counting the total
trash on a beach.

Total trash =
(Trash rate) x
(length of beach)

𝑇𝑟𝑎𝑠ℎ 𝑅𝑎𝑡𝑒 =
𝑘

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑓𝑖𝑛𝑑
𝑘 𝑝𝑖𝑒𝑐𝑒𝑠 𝑜𝑓 𝑡𝑟𝑎𝑠ℎ

Values Zi = location along
beach

MinCount
Sketch: k smallest values

Estimate:

Properties:
● Know the exact distribution of the estimate
● Estimate is unbiased

● Error is 𝜎 "𝑁 ≈ !
"#$

● 10% error if k = 102

● Minimum Variance Unbiased Estimator

Advantages / disadvantages
Sketch is (essentially) a random sample.

Same idea is the basis for Theta sketch and Tuple sketches in the Apache
Datasketches library.

Advantages Disadvantages

● Very flexible
● Supports all set operations including

○ unions
○ intersections
○ set difference

● Filtering

● But is much larger than other distinct
counting sketches (up to 15x larger
for large cardinalities)

● Slower worst case updates

Flexibility vs efficiency
Sketches reduce space by
restricting

● the queries that it can
answer and

● hence, the amount of
information it needs to
store

Technique:
Quantization

Girl with a Mandolin
Picasso, 1910

Sketch components

Summarization Convert data into a (random) process that preserves the
answers to a set of given queries

Encoding Find representations that store the summarization in
small space and allow for fast access.

Estimation Extract answers and error estimates from the sketch

HyperLogLog
HyperLogLog makes 2 modifications to MinCount

● k smallest ⇒ smallest in k bins (fast worst case updates)
● Quantize values (space efficiency)

Continuous HLL (fast worst case updates)
● Sketch:𝑆 ∈ ℝ"

● Hash item xi → (Bini, Zi)
○ Bini ~ Uniform({1, 2, …., k})
○ Zi ~ Uniform(0,1)

● Sb = Minimum Zi value assigned to bin b

Cardinality estimate:

𝑅𝑎𝑡𝑒 =
1
𝑘
-
!"#

$

𝑆!

%#

=
1

𝐴𝑣𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑡𝑒𝑚𝑠

!𝑁 = 𝑘 ⋅ 𝑅𝑎𝑡𝑒 = $!

∑"#$
% '"

HLL (+ quantization)
● Sketch:𝑆 ∈ ℝ"

● Hash item xi → (Bini, Zi)
○ Bini ~ Uniform({1, 2, …., k})
○ Zi ~ Uniform(0,1) ⟹)𝑍! = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 − log" 𝑍!

● #S# = Minimum #𝑍% value assigned to bin b

HLL (+ discretization)
● Sketch:𝑆 ∈ ℝ"

● Hash item xi → (Bini, Zi)
○ Bini ~ Uniform({1, 2, …., k})
○ Zi ~ Uniform(0,1)

● #S# = Minimum Zi value assigned to bin b
● 𝑆# = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 −log" 2𝑆#

Cardinality estimate:

𝑅𝑎𝑡𝑒 = 𝛼
1
𝑘
-
!"#

$

2%'"
%#

=
𝛼

𝐴𝑣𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑡𝑒𝑚𝑠

!𝑁 = 𝑘 ⋅ 𝑅𝑎𝑡𝑒 = ($!

∑"#$
%)&'"

𝛼 ≈ $.&"'(
')'.$&*/,

Rescale back
to (0,1)

Correct for
quantization

HLL vs MinCount

MinCount HLL

Error (large
cardinalities) ≈

𝑁
𝑘

≈ 1.04
𝑁
𝑘

Size 32 or 64 bits per entry 4-6 bits per entry

Operations Unions, Intersections,
Set difference,
Filtering

Unions

Navigating sketching
literature

Fishing boats at sea
Monet, 1868

Distinct counting sketches
Subset of distinct counting sketches

● Probabilistic counting (FM85)
● Linear probabilistic counting (LPCA)
● MinCount / Bottom-k
● Theta / Tuple sketch
● Self-learning bitmap
● Multi-resolution bitmap
● ⍺ - stable distinct counting
● Optimal distinct counting
● HyperLogLog (HLL)

○ HLL++
○ Streaming HLL
○ Virtual HLL / CountMin-HLL
○ Other variations

What should you pick??

Distinct counting sketches
Subset of distinct counting sketches

● Probabilistic counting (FM85)
● Linear probabilistic counting (LPCA)
● MinCount / Bottom-k
● Theta / Tuple sketch
● Self-learning bitmap
● Multi-resolution bitmap
● ⍺ - stable distinct counting
● Optimal distinct counting
● HyperLogLog (HLL)

○ HLL++
○ Streaming HLL
○ Virtual HLL / CountMin-HLL
○ Other variations

What should you pick??

Distinct counting sketches
Subset of distinct counting sketches

● Probabilistic counting (FM85)
● Linear probabilistic counting (LPCA)
● MinCount / Bottom-k
● Theta / Tuple sketch
● Self-learning bitmap
● Multi-resolution bitmap
● ⍺ - stable distinct counting
● Optimal distinct counting
● HyperLogLog (HLL)

○ HLL++
○ Streaming HLL
○ Virtual HLL / CountMin-HLL
○ Other variations

What should you pick??
It depends.

The ”optimal algorithm” turns out to be
highly inefficient even though it has
optimal space complexity.

Often a disconnect between theoretical
results and practice

HLL and Sampling based sketches
(MinCount, Theta, etc.) are particularly
well-rounded.

Many choices for implementing HLL

Good choices
● Sparse representation from HLL++ in Heule et al (2013)
● 4 bit bins using offset from Presto / Druid / Datasketches implementation
● Improved raw estimator from Ertl (2017)
● Error estimator from Ting (2019)
● Compression from Scheuermann and Mauve (2007), Lang (2017)
● Streaming HIP estimator + error from Cohen (2014) and Ting (2014)

Questionable choices
● Sacrifice ability to do unions for some efficiency gains using HLL-TailCut+

Key Property:
Mergeability

Mergeability
Given: A sketch construction algorithm S that yields estimates with error of scale
𝜎.

Definition: S is mergeable if there is a function which takes sketches S(D1) and
S(D2) yielding error of scale 𝜎 and generates a sketch S’ whose estimate has error
of scale 𝜎 as well.

Mergeability
Important for
● Distributed

processing / reliability
● Further aggregation

○ E.g. over time or
demographics

x1,x2,...,xt,

xt+1, …, xt’

S1

S2

x1,x2,...,xt,
xt+1, …, xt’

S’

Real problem:
Distinct counting for
many sets

Advertising problem
Question: How many distinct users saw an ad broken down by day, age, gender, country,
and device type?

● 100K ads
● 30+ days
● 5+ age buckets
● 2 genders
● 100+ countries
● 5+ device types

⇒ 30 * 5 * 2 * 100 * 5 = 150,000 counters / ad

⇒ 15 billion counters ⇒ 30 TB with 2KB sketches

Solution 1: Intersections
● 100K ads
● 30+ days
● 5+ age buckets
● 2 genders
● 100+ countries
● 5+ device types

⇒ 30 + 5 + 2 + 100 + 5 = 142 counters / ad

⇒ 14.2 million counters (vs 15 billion)

C
ou

nt
er

s
/ Q

ue
rie

s

Space per hash table counter
Space per
HLL sketch counter

Space per
Theta sketch
counter

C
ou

nt
er

s

C
ou

nt
er

sHLL
Vs

Intersections using Inclusion-Exclusion
Intersection cardinality estimates can be computed using inclusion-exclusion:

● But they are often terrible
● Error tends to be proportional to the largest estimate, i.e.

○ If the intersection has Jaccard similarity:
|#∩%|
#∪%

= 0.1
○ And sketch has cardinality estimates with error of 2%
○ The estimated intersection has error of approximately 2% ⋅ 𝐴 ∪ 𝐵 = 20% ⋅ |𝐴 ∩ 𝐵|

● Even worse if taking multiple intersections

Sketches for Intersections
Sampling based sketches are

● much larger than HLL for single counts,
● but are often much better for estimating intersections

Examples:

● MinCount / Bottom-k
● Theta / Tuple sketch

○ In Apache Datasketches

Other (union only) solutions
● Sparse representations for low cardinalities

○ HLL++ (Heule 2013)

○ Partial solution that makes low cardinality counters smaller

● Counter-sharing

○ Virtual HLL (Xiao et al 2015)

○ Count-HLL (provably correct, Ting 2019)

Sampling

Sampling
Advantages
● Extremely flexible

○ Same sample can be used to answer many questions

● Easy to work with
○ Often requires no change or only adding a weight to downstream methods

Disadvantages
● Less space efficient than specialized sketches

Previous tutorial: Cormode and Duffield, KDD 2014

Subset sum problem
What are the total sales with a promotional discount? by product category?

Problem: compute the sum

For any subset of indices

Sums
Despite simple form of the subset sum problem:

● A distinct count is a sum
● Intersections are subset sums
● Parametric statistical / ML models are (often) asymptotically sums

Problem: How to do better than uniform sampling?

Technique:
Horvitz-Thompson

Horvitz-Thompson Estimator
A way to estimate sums for samples drawn without replacement.

Denote:

● Zi = 1 if xi is in the sample and 0 otherwise
● 𝛑i = P(Zi = 1)

The Horvitz-Thompson (HT) estimator is

,𝑉 =/
%∈ℐ

𝑍%
𝜋%
𝑥% ≈/

%∈ℐ

𝑥% 𝑠𝑖𝑛𝑐𝑒 𝔼
𝑍%
𝜋%
= 1.

Technique: Probability
proportional to size
(PPS) sampling

Probability proportional to size (PPS) sampling
Goal: Find probabilities 𝜋% = 𝑃(𝑍% = 1) that give the HT-estimator low variance

A PPS sample samples has per item inclusion probabilities

𝜋K ∝ 𝑥K 𝑜𝑟 𝜋K = 1
● 𝜋% ’s scaled so the sample has expected size 𝑘(
● Larger items are more likely to be included
● Non-zero contributions to the HT estimator have constant value:)!

*!
= 𝑐

● No variability from values in the sum, only from the number of values K

𝑉𝑎𝑟 𝑆 = 𝑉𝑎𝑟 𝐸 𝑆 𝐾 + 𝐸 𝑉𝑎𝑟 𝑆 𝐾

Sketches for sampling
Challenge:
● Inclusion probabilities 𝜋! depend on unknown data 𝑥!
● Inclusion probabilities 𝜋! are not fixed, change with the stream length
● To ensure bounded size, items cannot be drawn independently

○ True inclusion probabilities are intractable to compute

Sampling sketches give ways to
● Draw PPS-like samples without replacement in bounded space
● Circumvent computing true inclusion probabilities
● Algorithms:

○ Priority sampling
○ VarOpt

● Combine multiple weightings: Multi-objective sampling (Cohen 2015)

Importance sampling
A way to estimate sums using samples drawn with replacement.

● Given weights 𝑥%

● Draw ith point with probability 𝜋% ∝ 𝑥% but do so with replacement

● 𝜋% ’s rescaled to sum to 1

Disadvantage: Duplicate items

Importance sampling
A way to estimate sums using samples drawn with replacement.

0

10

20

30

40

50

60

a b c d e f g h i j

Importance sampling
wastes half the sample
repeated sampling the
same value

W
ei

gh
t

Importance sampling vs HT + PPS
● HT + PPS is good when you

○ Have a fixed data set or
○ Have a discrete distribution

● Importance sampling is good when you
○ Perform Monte-Carlo estimation for
○ Continuous distributions
○ Or need to prove something where independence makes the proof easier

Break

Quantiles

Example problems
● Compute quality of service metrics

○ 99th percentile latency / battery life / etc.

● Robust metrics (median, interquartile range)

● Set anomaly detection thresholds

Usefulness of quantile sketches
● Saves an expensive operation: sorting a large array
● Extremely accurate

○ Errors 𝑂 '
-

versus 𝑂 '
-*

for sampling based approaches.

● Example:
○ AB test / Confidence interval for a 90% quantile on 10 M data points requires accurate

computation of 90.02% and 89.98% quantiles.
𝜖 ≈ 0.0001

○ Sampling: #
+!
= 100𝑀

○ Quantile sketch: #
+
= 10𝐾

Many Quantile sketches, many implementations
Partial list of quantile sketches Systems

Greenwald-Khanna (2001) Spark

MRL / RANDOM (Manku et al 1999, Agarwal et al
2012)

Q-digest (Shrivastava 2004) Presto

T-digest (v1 Dunning 2013, v2 + Ertl 2019) Dynatrace, Splunk, various

KLL (Karnin et al, 2016) Apache Datasketches

DDSketch (Masson et al 2019) Datadog

Moments sketch (Gan et a 2018) Druid extension

Relative error streaming quantiles (Arxiv 2020)

Navigating quantile sketches
Major, real world
databases make
suboptimal choices

Presto uses
Q-digest

Quantiles over Data Streams: Experimental Comparisons, New Analyses, and Further Improvements
Luo, Wang, Yi, Cormode. VLDB 2016

Navigating quantile sketches
Challenges
● Theoretical space complexity hides constant factors
● Incomplete algorithm specifications

○ Q-digest has one of the best theoretical guarantees but
■ Original paper did not say much about fast implementations
■ Bad constant factors

● Heuristic approaches can work fairly well in practice
● Not all guarantees are comparable

○ Some guarantees depend on distributional assumptions
○ If data streams are i.i.d. draws, there are more efficient algorithms

● Empirical evaluation of robustness is hard
○ Worst cases depends on order of values in the stream, not just the distribution of values
○ Not obvious how to build realistic adversarial cases

Navigating quantile sketches
Comparison based sketches
● GK, KLL, MRL, Relative error streaming quantiles
● Strong error guarantees

Fixed universe sketches
● Q-digest, Dyadic count sketch
● Strong error guarantees but worse space usage

Others:
● T-digest, DDsketch, Moments sketch
● Weak to no guarantees or often requires strong assumptions on the distribution
● Can still work pretty well in practice

Strong error guarantees
Quantile problem:
● CDF: F
● Desired q-quantile: 𝑥. = 𝐹/' 𝑞

Guarantee:
● Guarantee is on CDF: sup

0≈2,
T𝐹 𝑥 − 𝐹 𝑥 < 𝜖

● May ask for q-quantile but get 𝑞 − 𝜖 -quantile: W𝑥. ∈ 𝑥./-, 𝑥.)-
● Not on the raw values: not W𝑥. = 𝑥. ± 𝜖

● No assumptions on input stream
● Probabilistic guarantees hold with probability 1 − 𝛿
● Precise error bounds can be computed

Example weak guarantee: DDSketch
● DDSketch is essentially a histogram on log scale values

○ Cares about only one tail of the distribution
○ Keeps equal width bins on that side of distribution and collapses bins on the other side

● Guarantee: D𝑥+ = 𝑥+ 1 ± 𝜖 if 𝑥, ≤ 𝑥+𝛾-#,
○ m is the size of the sketch

○ Histogram bin widths are defined by 𝛾 = #-+
#%+

● Assumptions in guarantee:
○ Values are from a bounded interval: (0,c)
○ True quantile is within m bins of the max

Example weak guarantee: Moment sketch
● Assumptions:

○ Data is on bounded interval: (-c, c)
○ Has bounded density f

● Guarantee: ,𝐹 − 𝐹 = 𝑂 ."#$
-

where m = # stored moments

● Not for a specific, desired quantile
● Has distributional assumptions
● Only a rate, cannot provide error bound

Comparing sketches

Sketch Guarantee Space Mergeable with
space
guarantee

Optimal space
complexity

KLL (with GK) Probabilistic 𝑂
1
𝜖
log log 𝛿%# No Optimal

randomized

KLL Probabilistic 𝑂
1
𝜖
log) log 𝛿%# Yes

MRL Deterministic 𝑂
1
𝜖
log) 𝜖𝑛 Yes

Greenwald-
Khanna

Deterministic 𝑂
1
𝜖
log 𝜖𝑛 No Optimal

deterministic

Comparing sketches

Sketch Guarantee Space Mergeable with
space
guarantee

Optimal space
complexity

KLL (with GK) Probabilistic 𝑂
1
𝜖
log log 𝛿%# No Optimal

randomized

KLL Probabilistic 𝑂
1
𝜖
log) log 𝛿%# Yes

MRL Deterministic 𝑂
1
𝜖
log) 𝜖𝑛 Yes

Greenwald-
Khanna

Deterministic 𝑂
1
𝜖
log 𝜖𝑛 No Optimal

deterministic

Superiority of randomized sketches

Sketch Guarantee Space Mergeable with
space
guarantee

Optimal space
complexity

KLL (with GK) Probabilistic 𝑂
1
𝜖
log log 𝛿%# No Optimal

randomized

KLL Probabilistic 𝑂
1
𝜖
log) log 𝛿%# Yes

MRL Deterministic 𝑂
1
𝜖
log) 𝜖𝑛 Yes

Greenwald-
Khanna

Deterministic 𝑂
1
𝜖
log 𝜖𝑛 No Optimal

deterministic

Deterministic
guarantees depend on

the stream length n

Probabilistic guarantees
have weak dependence

on failure probability

Compactors and compactor hierarchies
How randomized quantile sketches work
● Built by stacking “compactors” of fixed size
● Each compactor is a “better than uniform” sample

○ Sort the items in the compactor
○ Randomly select either the even indices or the odd indices and double the selected items’

weight
● If I ask how many are ≤ 𝑥 where x is even, the compactor will return an exact

answer while uniform sampling will return a random one

1 2 3 4 98 99 100

New developments: Improved tail quantiles
Problem: Often only tail quantiles are of interest (e.g. 99th percentiles)

● Heuristic targeting of tail quantiles
○ DDSketch
○ T-digest

● Theoretically sound, but not practical
○ Guarantees error 𝜖𝑞 𝑜𝑟 𝜖(1 − 𝑞) 𝑣𝑠 𝜖 for regular quantile sketches
○ KLL sketch with error 𝜖𝑞 would be smaller for practical values of q
○ Zhang and Wang 2007
○ Q-digest variation: Cormode, Korn, Muthukrishnan, Srivastava 2006

● New:
○ Relative Error Streaming Quantiles (Cormode, Karnin, Liberty, Thaler, Vesely 2020)

Choosing a sketch

● KLL is clearly the best sketch if
○ Theoretical guarantees are needed for all inputs
○ Providing randomized guarantees are acceptable
○ Good practical performance is needed

● Heuristic approaches can still work
○ T-digest v2
○ DDsketch

● Recent developments may be better for tail quantiles

Top-k / Frequent Items
/ Heavy hitters

Problems
Examples:
● Monitoring: Detect a DDoS attack on a destination
● Analytics: Find the top selling products or heaviest users
● Recommendations: What are the trending topics?

Problem: Given a stream of (key, increment) pairs, find the keys with the largest
total sums

Space Saving

Space Saving

Space Saving

Space Saving

Space Saving

Properties
● Simple definition:

○ For a sketch of size m, an item is a heavy hitter if it appears > n/m times.

● Deterministic guarantee:
○ Every heavy hitter is included in the sketch

● Space-Saving / Misra-Gries and its variants are the current ”best” heavy
hitter sketch

○ When there exist heavy hitters and
○ Only heavy hitters are of interest

Flexibility vs efficiency
Sketches reduce space by
restricting

● the queries that it can
answer and

● hence, the amount of
information it needs to
store

Power of randomization
● For any question other than what the heavy hitters are or there are no heavy

hitters, then the sketch is useless!

● With a bit of randomization, you can extend the functionality and compute
subset sums.

Unbiased Space Saving

Unbiased Space Saving

Properties
● Given an i.i.d. input stream,

○ The heavy hitters are recovered almost surely
○ The sketch asymptotically generates a PPS sample

■ with size proportional to each item’s total count
■ but without knowing the item counts a priori.
■ Good for event streams

● For non-i.i.d. streams
○ The sketch still generates a sample with unbiased weights

Takeaway:
Consider more
flexible sketches

• Can be better to
choose one sketch to
solve two problems
than two sketches that
are the best for their
specific problems

Linear sketches

Linear sketch
● Linear transformation of the data

○ 𝑆 = 𝑀 𝑋

○ M does not depend on X

● Automatically supports

○ Merging: 𝑆./0 = 𝑀 𝑋# + 𝑋) = 𝑆# + 𝑆)

○ Deletions: 𝑆./0 = 𝑀 𝑋# − 𝑋) = 𝑆# − 𝑆)

Counting sketches
Data stream of key, value pairs: (k1, x1), (k2, x2), …, (kt, xt)

Goal: Compute sum grouped by key 𝑣' = ∑(3)' 𝑥* ∀𝑘𝑒𝑦𝑠 𝜅

Example
● Given an event stream of delivered ad ids,
● Compute the total number of impressions per ad
● Can be used as a component for other sketches that count

○ Quantile sketches
○ Heavy hitter sketches

CountMin
Sketch: d x w array of counters

Given a pair (k,x) from the stream, each key hashes to d counters and increments
them by x

Sketch is a linear mapping of
total count vector 𝑣⃗

Technique:
Success Amplification
and concentration
inequalities

Replication
Each counter for key k contains
● True sum 𝑣"
● IID error 𝜖% due to hash collisions
● Independent upper bound on 𝑣" that can be used as an estimate

vk+𝜀1

vk+𝜀2

vk+𝜀3

CountMin estimation
Estimate total sum for key k by

vk+𝜀1

vk+𝜀2

vk+𝜀3

Success amplification
● One estimate has failure probability

𝑃 𝜖% > 𝑐 = 𝜌

● Minimum of d estimates has exponentially smaller failure probability

𝑃 min
%/,,…,2

𝜖%> c = 𝜌2

● Many analyses for sketching are based on similar probabilistic inequalities
(Markov’s, Azuma-Hoeffding, Bernstein, etc)

Technique:
Optimal statistical
estimation

Advantages of statistical estimation techniques
Statistical techniques can provide
● General techniques that can work on a variety of problems e.g. MLE
● Which often automatically have good properties

○ Asymptotic efficiency / Minimum variance estimators
○ Consistency / unbiasedness
○ Tight error estimates

● Results are useful for finite sample behavior

○ Space complexity ignores large leading constants

○ Asymptotics often are interested in that leading constant and only ignore lower over terms

New developments:
Connecting theory and practice

Concentration inequalities
prove correctness but may
not provide useful bounds.
● Bounds can be orders of

magnitude off
Theoretical

Empirical

Improved error and estimation
CountMin sketch entries all contain identically distributed error.
● True model: S3 = 𝑣% + 𝜖%4
● Basically known error distribution 𝜖%4 ~ 𝐹 since there a many replicates.
⇒ Statistical techniques yield improved estimates and tight error bounds

𝜀11 vk+𝜀12 … 𝜀16

𝜀21 𝜀22 … vk+𝜀25 𝜀26

𝜀31 𝜀32 vk+𝜀33 … 𝜀36

Implementing sketches
● Often requires

○ Choosing which sketch to use

○ How to size the sketch and choose parameters to achieve a desired error

■ Time consuming to do empirically, can’t always be fully trusted

■ Preferable to use theory if it returns tight error bounds

■ Tight error bounds makes it feasible to optimize for the best sketch parameters

● Ting (2019). Count-Min: Optimal Estimation and Tight Error Bounds using Empirical Error Distributions. KDD

Technique:
Random Projections

Random projection

XT
MT

ST=

d

n

d

m

n

m

Random projection
● 𝑆(𝑋) = 𝑀 𝑋

● Take M to be matrix with random entries such that
𝔼 𝑀5𝑀 = 𝐼

● Then for an 𝑛6×𝑑 matrix V,
V7X ≈ 𝑆5 𝑉 𝑆 𝑋

● Typically 𝑀%4~ 𝑁𝑜𝑟𝑚𝑎𝑙 0, ,
8

Johnson-Lindestrauss Theorem
● Given a 𝑑×𝑛 data set X of n points
● The JLT gives that a Gaussian random projection simultaneously preserves

all pairwise distances

1 − 𝜖 𝑋% − 𝑋4
$ ≤ 𝑆% − 𝑆4

$ ≤ 1 + 𝜖 𝑋% − 𝑋4
$

● JLT also implies inner products are preserved
● Condition: need 𝑚 = Ω(𝜖#$log 𝑑) dimensions in the random projection

Applications
● Other counting sketches: AGMS / Count

○ Join size estimation for query optimization

○ Count based features in ML models

■ Historical click through rates

● Dimensionality reduction
● Fast, iterative numerical linear algebra solvers

Advanced methods

Sampling for Statistical / ML models
Ways to generate weights for data point

● Leverage score sampling
● Local Case-control sampling
● Influence based

○ Many estimators that are loss minimizers / likelihood maximizers (M-estimators) are theoretically
analyzed as a sum

N𝜃 = 𝜃 +
1
𝑛
-
1

𝜓2(𝑋1) + 𝑜3
1
𝑛

○ 𝜓2(⋅) is called the influence function
○ Contributions to error are a sum over influences 𝜓2(𝑋1) ⇒ Use PPS sampling
○ Asymptotically optimal if you can compute influence exactly

Matrix approximations
● Frequent directions (Liberty 2013)

○ Approximate SVD: Find top right singular vectors in a stream

○ Bears resemblance to Misra-Gries

● Nystrom approximation

○ For approximating low-rank kernel matrices

○ Used for Gaussian processes, Kernel methods, spectral graph based methods

Coresets
Any set of weighted points C = (W,)𝑋) which can be used in place of the original
data X to obtain an accurate approximation.

● Typically satisfies: 𝑐𝑜𝑠𝑡 𝐶, 𝜃 − 𝑐𝑜𝑠𝑡 𝑋, 𝜃 ≤ 𝜖 ⋅ 𝑐𝑜𝑠𝑡 𝑋, 𝜃

● More general than sampling as it can be generated through optimization or
sampling

● Example uses: SVM, Bayesian methods, clustering

Graph problems
● Graphs pose unique challenges since

○ They can easy grow very large

○ Node / edges cannot be picked independently

● Example problems:

○ Minimum spanning tree

○ Maximum weight matchings

○ Graph sparsification

Privacy and sketching

Uses
● Identifying privacy risks

● In privacy preserving data collection

Identifying privacy risks
● KHyperLogLog
● Example

○ Sensitive data set with user ids removed but contains User Agent (UA) strings

○ If a UA string is unique, then it may be joined to a (non-sensitive) data set with UA string

⇒ Potential privacy violation

Many UA strings
are associated to a

unique ID =>
privacy violation

KHLL
● Very simple sketch that composes a sampling based method with a distinct

counting sketch

○ Use a k-minimum values sketch to sample a set of User Agent strings

○ Use an HLL sketch to estimate the number of distinct users associated with these sampled UA
strings.

● Produces this histogram identifying privacy risks

Many UA strings
are associated to a

unique ID =>
privacy violation

Differential privacy
● Definition: An algorithm 𝒜 is 𝜖-differentially private if for any datasets D1, D2

differing in only one data point and for any set S,
𝑃(𝒜 𝐷, ∈ 𝑆)
𝑃(𝒜 𝐷$ ∈ 𝑆)

≤ exp 𝜖

● Colloquially, even if you knew everything about everyone in the database
except the single person you want to snoop on, you would at best be
exp 𝜖 − 1 ≈ 𝜖 more sure about that person’s true value.

● Advantage of DP is that it provides provable privacy guarantees

Relevance of sketches
Data: (key, value) pairs

● Reduce data transferred and costs
○ Differential privacy mechanisms rely on injecting noise
○ Sparse vectors of (key, value) pairs become not sparse since unobserved keys get noise too
○ E.g. website visits
○ Increased communication costs

● Reduces added noise since there are fewer entries to add noise to
● Privatized or changing domains (keys)
● Sketches themselves can introduce some noise-like behavior

Privacy in use
● Google developed the KHLL sketch

● Apple uses a Private Count Mean Sketch

○ Other data sketching techniques (Fast Hadamard Transform) are used to further reduce the
communication costs from 1 row in a sketch down to 1 bit.

Summary
● Sketches

○ Distinct counting, Quantiles, Frequent Items, Sampling
○ Linear sketches and random projections
○ “Advanced” sketches

● How they work
○ Techniques for constructing sketches and obtaining estimates
○ Statistical perspective. Sketch = efficiently encoded random process
○ Use of statistical techniques to improve sketches

● Principles
○ Trading off flexibility with efficiency
○ All queries vs. Inserting queries vs. Interesting answers
○ Constants matter!
○ Reduction of complex problems to simple sketches

● Guarantees
● Privacy and sketches

Some resources
● Book: Small Summaries for Big Data. Cormode and Yi (2020)

○ http://dimacs.rutgers.edu/~graham/ssbd.html

● Documentation and sketches at https://datasketches.apache.org/
● Problems at https://sublinear.info/
● Edith Cohen’s papers organized by topic at

http://www.cohenwang.com/edith/publications.html
● Past tutorials on sampling and sketching

○ KDD 2014: Cormode and Duffield:
https://nickduffield.net/download/papers/Tutorial_KDD_2014.pdf

● Book: Sketching as a Tool for Numerical Linear Algebra. Woodruff (2014)

http://dimacs.rutgers.edu/~graham/ssbd.html
https://datasketches.apache.org/
https://sublinear.info/
http://www.cohenwang.com/edith/publications.html
https://nickduffield.net/download/papers/Tutorial_KDD_2014.pdf

