

A Production Quality Sketching Library for the Analysis of Big Data

Lee Rhodes Distinguished Architect Yahoo, Inc.

Problematic Queries of Big Data

Where traditional analysis methods don't work well

Approximate Analysis Using Sketches

How using stochastic processes and probabilistic analysis wins in a systems architecture context

The Open Source Apache DataSketches Library

A quick overview of this unique library dedicated to production systems that process big data.

The Data Analysis Challenge ...

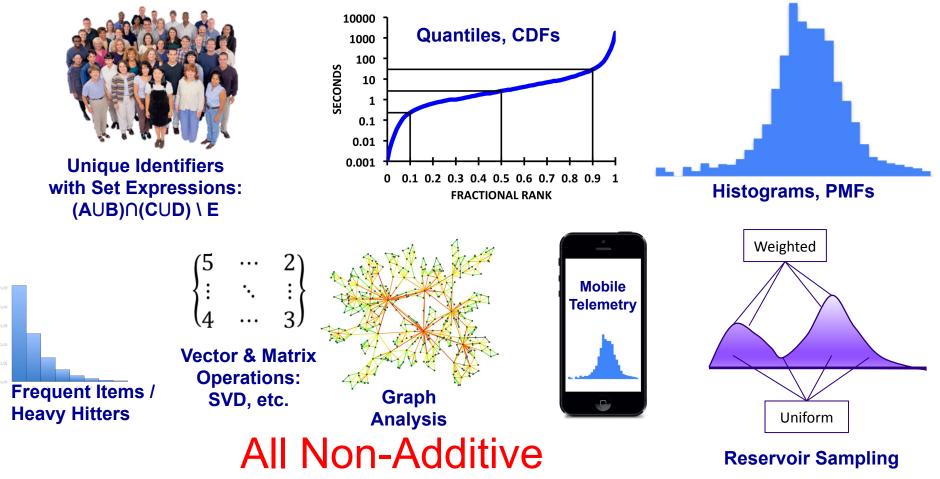
Example: Web Site Logs

Time Stamp	User ID	Device ID	Site	Time Spent Sec	ltems Viewed
9:00 AM	U1	D1	Apps	59	5
9:30 AM	U2	D2	Apps	179	15
10:00 AM	U3	D3	Music	29	3
1:00 PM	U1	D4	Music	89	10

Billions of Rows or *K*,*V* Pairs ...

... Analyze This Data In Near-Real Time.

Some Very Common, but Problematic, Queries ...

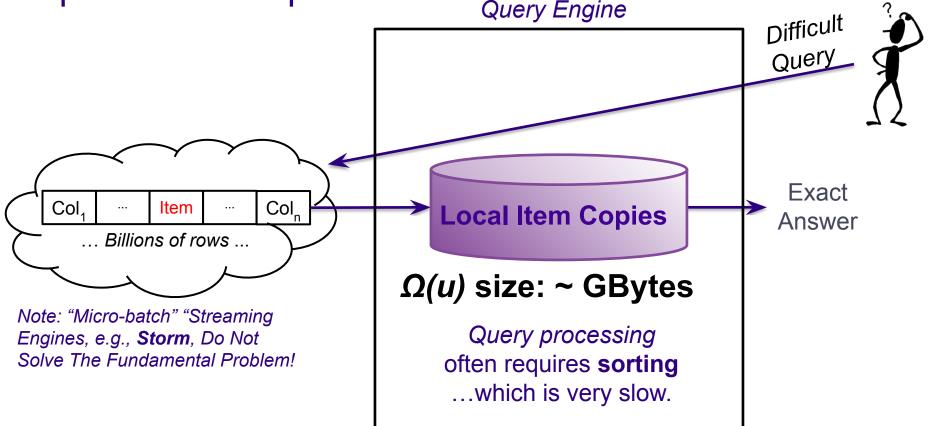


When The Data Gets Large Or Resources are Limited,

All Of These Queries Become Problematic

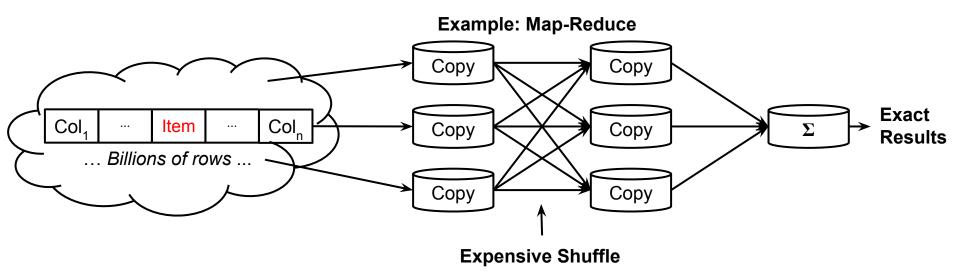
Because the Aggregations are Non-Additive or Non-Linear

Traditional Exact Analysis Methods Require Local Copies



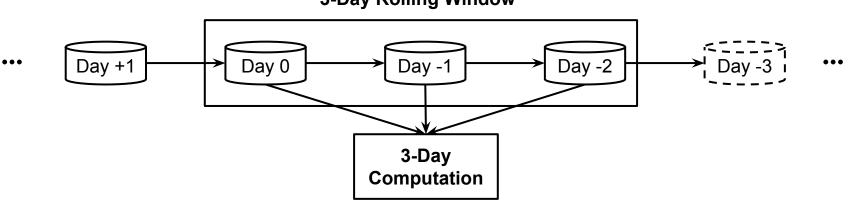
Parallelization Does Not Help Much

- Because of Non-Additivity.
- You have to keep the copies somewhere!
- And with some operations, you may need ALL of the data always available.



Traditional Time Windowing

Requires Multiple Touches of Every Item in Every Daily Dataset



3-Day Rolling Window

Every daily dataset is processed N times for a rolling N-day window!

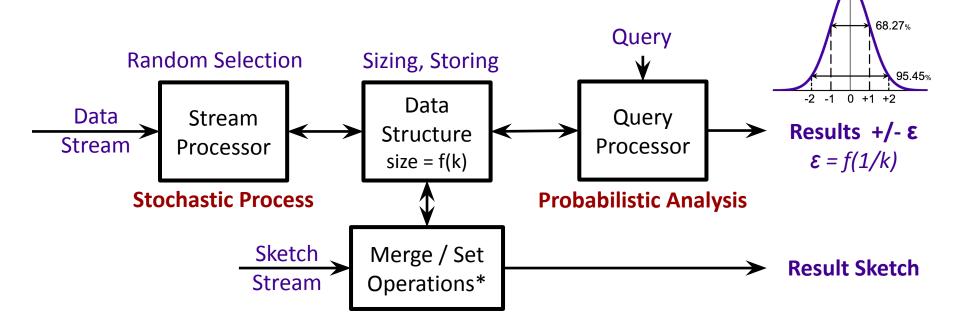
Let's challenge a fundamental premise: ... that our results must be exact!

If we can allow for approximation, along with some accuracy guarantees,

we can achieve orders-of-magnitude improvement in

- speed and
- reduction of resources.

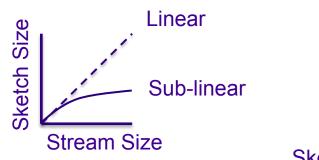
Introducing the *Sketch* (a.k.a, Stochastic Streaming Algorithm) Model the Problem as a Stochastic Process with a Dynamic Data Structure. Analyze using Probability & Statistics



A Single Sketch Contains Many Algorithms

Key Sketch Properties Important to Us

- Small Stored Size
- Single-pass, "One-Touch"
- Data Insensitive
- Mergeable
- Mathematically Proven Error Bounds



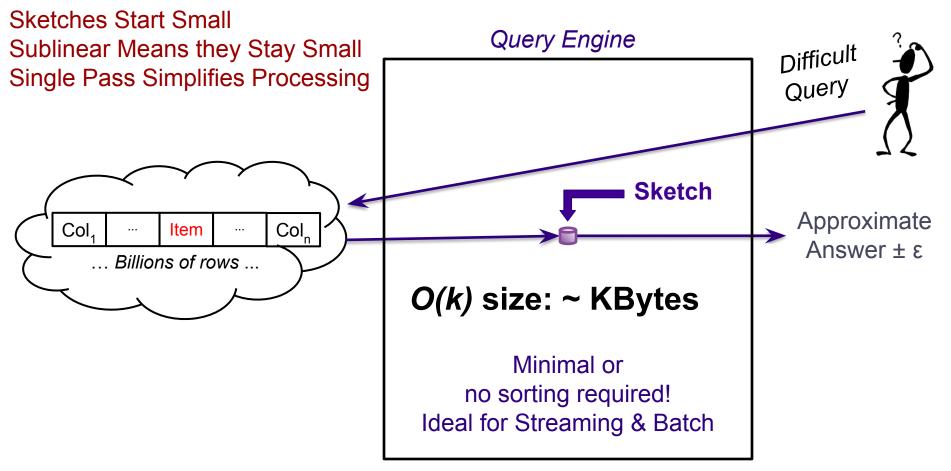
Sketches Overlap with Sampling Sketching Sampling

Based on the Specific Sketch

Why & How Sketches Achieve Superior Performance

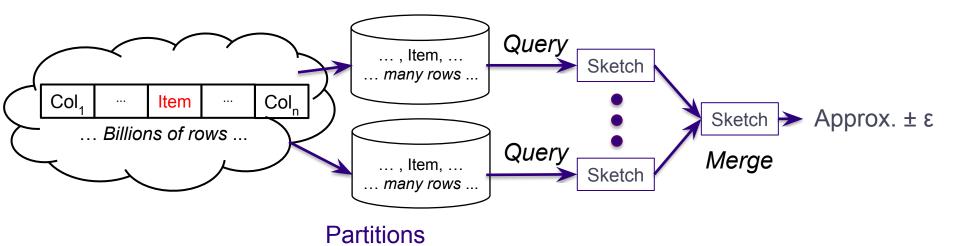
For Systems Processing Massive Data

Win #1: Small Query Space



Win #2: Mergeability

Mergeability Enables Parallelism ... With No Additional Loss of Accuracy! Sketches transform **Non-Additive** metrics into **Additive** Objects The Result of a Sketch Merge is Another Sketch ... Enabling Set Expressions for Selected Sketches

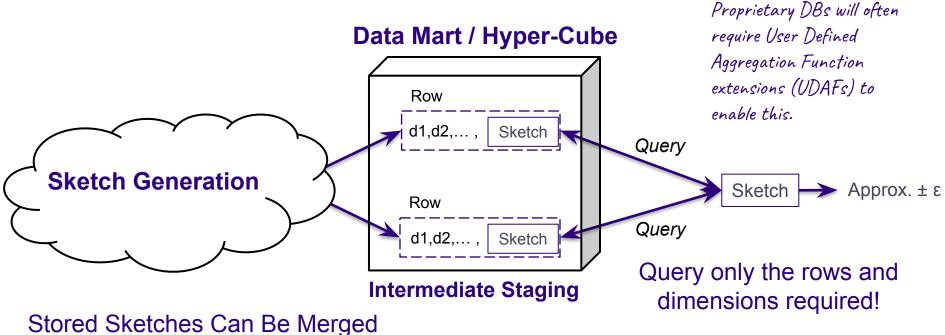


Wins #3, 4: Speed, Simpler Architecture

Intermediate Hyper-Cube Staging Enables Query Speed

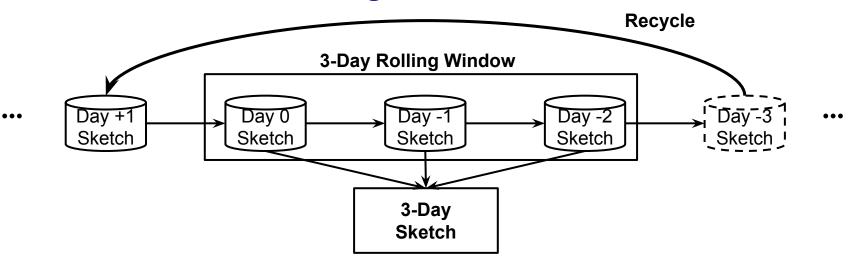
Additivity Enables Simpler Architecture

Sketches are small enough to store in the Hyper-Cube of other data!



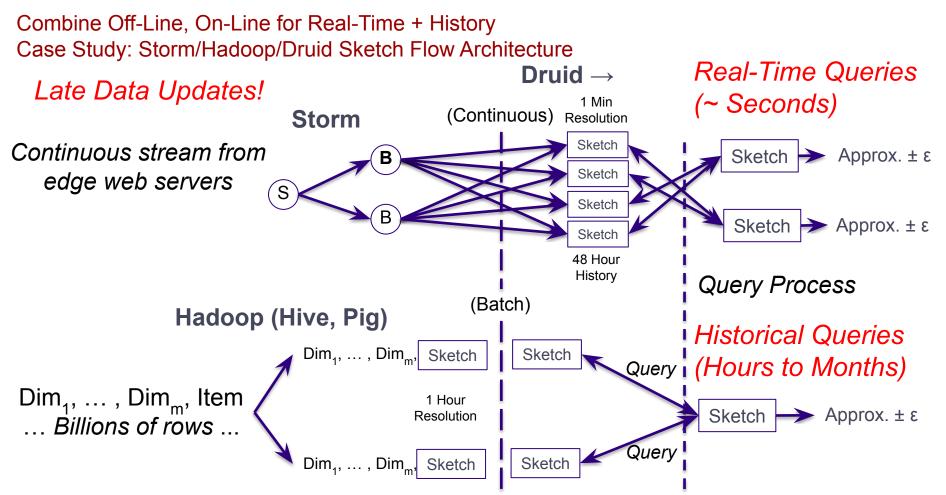
Stored Sketches Can Be Merged By Any Dimensions, Including Time!

Win #5: Simplified Time Windowing & Late Data Processing



Every daily dataset is processed only **once** for a rolling N-day window! **Late-data processing** is now possible. Sketches can be recycled.

Near-Real Time Results, with History



Win #6: Lower System Cost (\$) Case Study: Real-time Flurry, Before & After

- Customers: >250K Mobile App Developers
- Data: 40-50 TB per day
- Platform: 2 clusters X 80 Nodes = 160 Nodes
 - Node: 24 CPUs, 250GB RAM

Big Wins! Near-Real Time Lower System \$

	Before Sketches	After Sketches
VCS* / Mo.	~80B	~20B
Result Freshness	Daily: 2 to 8 hours; Weekly: ~3 days Real-time Results Not Feasible!	15 seconds!

* VCS: Virtual Core Seconds

Introducing

Apache DataSketches ТΜ

https://datasketches.apache.org

Our Mission...

Combine Deep Science with Exceptional Engineering To Develop **Production Quality** Sketches That Address These Difficult Queries

The Sketch Design Process

1. The Art:

Model a problem as a stochastic process and a data structure ...

2. The Science:

Analyze the data structure using probability, statistics to extract the desired result with well understood error properties. Prove that it works! Publish to Scientific Venues.

https://datasketches.apache.org/docs/Community/Research.html

3. The Engineering:

Transform the Art and the Science Theory into a Product!

- Create useful APIs for use in production systems
- Document with code examples for system engineers
- Exhaustively test & characterize to ensure robustness
- Publish to Open Source

The Apache DataSketches Library

Cardinality, 4 Families

- HLL (on/off Heap) A very high performance implementation of this well-known sketch
- CPC The best accuracy per space
- Theta Sketches: Set Expressions (e.g., Union, Intersection, Difference), on/off Heap
- Tuple Sketches: Generic, Associative Theta Sketches, multiple derived sketches:

Quantiles Sketches, 3 Families

- Quantiles, Histograms, PMF's and CDF's of streams of comparable objects, on/off Heap.
- KLL, highly optimized for accuracy-space.
- Relative Error Quantiles, Extremely accurate at the ends of the rank domain

Frequent Items (Heavy-Hitters) Sketches, 3 Families

- Frequent Items: Weighted or Unweighted
- Frequent Directions (Approximate SVD) (a Vector Sketch)
- Frequent Distinct Tuples: Multi-dimensional Frequency & Distinct Analysis
- Reservoir and VarOpt (Edith Cohen) Sketches, 2 Families
- Uniform and weighted sampling to fixed-k sized buckets
- **Specialty Sketches**
- Customer Engagement,, Maps, etc.

Languages Supported:

- Java, C++, Python
- Binary Compatibility across languages

Bright Future for Sketching Technology & Solutions ...

Items (words, IDs, events, clicks, ...)

- Count Distinct
- Frequent Items, Heavy-Hitters, etc
- Quantiles, Ranks, PMFs, CDFs, Histograms
- Set Operations
- Sampling
- Mobile (IoT)
- Moment and Entropy Estimation

Graphs (Social Networks, Communications, ...)

- Connectivity
- Cut Sparsification
- Weighted Matching
- ...

Areas where we have sketch implementations Areas of research (World-wide) Vectors (text docs, images, features, ...) And Matrices (text corpora, recommendations, ...)

- Dimensionality Reduction (SVD)
- Ridge Regression
- Covariance Estimation
- Low Rank Approximation
- Sparsification
- Clustering (k-means, k-median, ...)
- Linear Regression
- Machine Learning (in some areas)
- Density Estimation

THANK YOU!

Open Invitation for Collaboration

Learn more about Apache DataSketches Come and Visit Us!

https://datasketches.apache.org

