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A Framework for Estimating
Stream Expression Cardinalities
Anirban Dasgupta, Kevin Lang, Lee Rhodes, Justin Thaler
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Motivating Task

■ Distributed data acquisition.
■ Count-Distinct queries with predicates.
■ Example: how many unique IP addresses accessed
servers in either UK and France yesterday, not counting
those on the spam-bot list that we just got.
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Brute Force Solution Contrasted with Sketches

Merge	
  
Streams	
  

Filter	
  &	
  
Count	
  

Make	
  
Sketch	
  

Merge	
  
Sketches	
  

Filter	
  &	
  
Es7mate	
  

stream 1 

stream m 
stream 

sketch 1 

count 

sketch m 

stream 1 

stream m 

sketch estimate 

filter on 
identifiers Query 

subset of 
streams 

Distributed Data 
Acquisition 

Centralized Query Engine 



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks

■ HyperLogLog sketches don’t work because of the
late-arriving predicate.

■ K’th Minimum Value sketches [Beyer et al] would work in
principle.

⟩ KMV sketch is the set of k+1 smallest hashed ID’s.
⟩ KMV estimate is k/mk+1.

■ However, practical difficulties arise in large real-world
organizations.
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Difficulty 1: Non-matching values of k.

[k determines # of samples in sketch.]
■ Team A: k = 10,000
■ Team B: k = 2,000 (this year)
■ Team B: k = 1,000 (last year)

Question: how to produce estimates spanning both teams
and both years? Note: reducing all k ’s to 1,000 means
throwing away data.
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Difficulty 2: Alternate Sketching Algorithms

■ Team C: used Adaptive Sampling because
higher throughput.

■ Team D: used a novel algorithm that
downsamples short as well as long streams
[see pKMV in paper].

Now there are three different kinds of sketches. Are they
mergeable? Who knows, but the boss say we need to
compute company-wide estimates.
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Difficulty 3: Exotic Sketching Algorithms

■ Team E: used a novel algorithm that has even
better latency and throughput than Adaptive
Sampling [see Alpha Algorithm in paper].

■ Team F: used a plausible-sounding modification
of KMV called QS\C.

These algorithms are sensitive to input order, hence difficult
to analyze even for single streams, much less unions.
Now how does one compute company-wide estimates?
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Our Theoretical Contribution

■ Identified ”real” reason why KMV estimates are unbiased:
■ A simple property called “1-goodness”.
■ Also 1-good: pKMV, Adaptive Sampling, Alpha Algorithm,
and many others.

■ Brings them into a common mathematical framework.
■ More importantly, allows a real-world system to freely
intermingle and MERGE all of these sketch types.
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Theta Sketch Framework

■ Parameterized by a “Threshold Choosing Function” T()
that maps streams to thresholds in (0, 1].

■ T() = mk+1 instantiates the framework as KMV.
■ A different T() instantiates it as Adaptive Sampling.
■ Other choices of T() result in novel schemes such as
pKMV and Alpha Algorithm.
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Theta Sketch Framework, cont’d

■ T() maps streams to thresholds in (0, 1].
■ Let A be a stream [already hashed to values in [0, 1)].
■ Sketch is a pair (θ, S), where

θ = T(A).
S = {h ∈ A s.t. h < θ}.

■ The cardinality estimate is n̂ = |S|/θ.
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Theta Sketch Framework, cont’d again

■ n̂ = |S|/θ =
∑

n Si/T(), where Si is Bernoulli indicator
variable for membership in the set S.

■ Therefore E(n̂) =
∑

n E(Si/T()),
■ so E(Si/T()) = 1 would imply n̂ = n, [in other words, the
cardinality estimate would be unbiased.]
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Fixed-Threshold Sampling

■ Horvitz-Thompson: if T() were a constant F, then
E(Si/T()) = F/F = 1.

■ Unfortunately, fixed-threshold sampling uses O(N) space
and is therefore not sketch-like.

Better functions T() depend in complicated ways on the
hash values in the stream.
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Our Main Theorem

■ Theorem: if every “fix-all-but-one projection” of T() is
“1-good”, then E(Si/T()) = 1 so E(n̂) = n.

■ In other words, the sketches provide unbiased estimates.
■ Coming up: definitions of the quoted terms.
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Definition: fix-all-but-one projection of T(stream)

■ Pick any label L in the stream.
■ Freeze the hash values of all other labels.
■ Consider the univariate function T(x)
where x is the hash value of L.
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Formal Definition of 1-goodness

A univariate function T(x) is 1-good iff there exists a constant
F such that:

if x < F then T(x) = F
else T(x) <= x.

That definition is VERY dry, so ...
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Diagram Illustrating 1-goodness

x 

T(x) 
Exclusion 
 Zone 

x=
y 

F 

Vary x from 0 to 1. If T(x) is constant until the x = y line,
and then avoids the “exclusion zone”, then T(x) is 1-good.
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Why Three Sketching Algorithms are Unbiased

x 

T(x) 
Exclusion 
 Zone 

x=
y 

F 

KMV 

x 

T(x) 
Exclusion 
 Zone 

x=
y 

F 

Adaptive Sampling 

x 

T(x) 
Exclusion 
 Zone 

x=
y 

F 

Alpha Algorithm 

Previously, each had a separate proof involving lots of algorithmic-specific math.
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Contrapositive of Main Theorem

Any T() that yields biased estimates possesses at least one fix-all-but-one
projection that is not 1-good.

x 

T(x) 
Exclusion 
 Zone 

x=
y 

F 
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Sketch Merging

■ Framework uses a special minimum-of-θ’s merging rule.
■ θu = minm θj.
■ Su = {h ∈ ∪mSj s.t. h < θu}.
■ Theorem: subject to several conditions [see paper], the
estimation error of m-o-θ’s union sketches is at least as
small as sketches created directly from concatenated
input streams.
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Main Result about Sketch Merging

■ Theorem: If 1-good sketches are combined using the
minimum of θ’s rule, then the result is a 1-good sketch of
the union of the input streams.

■ Corollary: m-o-θ’s union sketches provide unbiased
estimates.

■ Holds even for non-matching k’s and multiple base
algorithms.

■ The big-organization problem is solved!
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Novel Base Algorithm: pKMV

■ Some real-world systems contain an astronomical
number of very short streams.

■ Problem: When |stream| < k, KMV saves no space.
■ Solution: pKMV, for which T() = min(mk+1, p).
■ If e.g. p = 1/8, would save at least factor of 8 space, and
more than that for long streams.
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Novel Base Algorithm: Alpha

The “Alpha Algorithm” is 1-good and provides KMV-like behavior without a heap
data structure or QuickSelect. Results of Equal-Space Comparison:
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Summary and Conclusion

■ 1-goodness is a very simple sufficient condition for
unbiasedness of KMV-like sketching algorithms.

■ Our theoretical results permit different kinds of sketches
to co-exist and be combined within a single real-world
Big Data system.

■ Systems of this type have been built by Yahoo.
■ The sketching code that lies at the heart of these systems
is available as an open-source library at
http://datasketches.github.io.

http://datasketches.github.io

